
Players.doc

Tax

Players.doc ii

COLLABORATORS

TITLE :

Players.doc

ACTION NAME DATE SIGNATURE

WRITTEN BY Tax January 25, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Players.doc iii

Contents

1 Players.doc 1

1.1 main . 1

Players.doc 1 / 18

Chapter 1

Players.doc

1.1 main

* *
* How to make Extern Players to AccessiblePlayer *
* *
* Update 02-09-1994 *
* *

Players

All the extern players are built like a library. The player should be
stored in the LIBS:APlayer/ directory. There are only one function in the
library, and this is a very simple one. The only thing it should do, is to
return a pointer in A0 to a taglist.

A taglist is a list which contains some parameters, that will indicate what
this player supports. There are a lots of tags, where the data field should
point to a function, which has to do something e.g. a test function. All
your functions will be called with a pointer to the AccessiblePlayer global
data area in A5 (see below).

Remember when you code the different functions, you have to save all
registers, also D0/D1/A0/A1.

Note also that the library name (without the ap- and the -.library
extension) must have a maximum length of 26 character!!!!

If you want to load a config file or do something else, the first time the
library is opened, you can make your code in the library init routine, just
remember to free all allocations in the expunge routine.

TAGS

Players.doc 2 / 18

Your taglist can contain the following tags. Note that you may NOT change
the taglist, except the normal tags (TAG_SKIP, TAG_END etc.). If you want
some changes, do it in another way. Because of this, I have made some tags
pointing to a function instead of a pointer to some data. A good thing is
to make your load, test and free memory routines independent of your other
routines. If the user has double buffering turned on, your test, load and
free code will be called while your play function still plays the previous
module.

APT_RequestVersion (UWORD)

This tag can be used, if the player uses some global functions which are
implemented in a later version of AccessiblePlayer. The ti_Data field
should contain the first version number of AccessiblePlayer where the new
functions are implemented. The player will not be used, if it needs a newer
version of AccessiblePlayer that the one which is currently in use.

(ULONG) APT_EarlyCheck (FPTR)

If you use this tag, AccessiblePlayer will call the function via ti_Data
before it has loaded the module. You can use this, if you don’t need the
whole module in memory before testing. Notice that this tag are mutual
excluded with APT_Check. Your testing routine has to return a success flag
in D0. 0 means that it can’t recognise, 1 if everything went ok or 2 if
there where an error. This tag or APT_Check must exist. This tag will also
allow crunched files.

(ULONG) APT_Check (FPTR)

If you use this tag, AccessiblePlayer will call the function via ti_Data
after it has loaded the module into chip memory. Do only use this tag if
you can’t test before the whole file are in memory. Notice that this tag
are mutual excluded with APT_EarlyCheck. You will get the start address in
A1. Your testing routine has to return a success flag in D0. 0 means it
can’t recognise, 1 if everything went ok or 2 if there where an error. This
tag or APT_EarlyCheck must exist.

(APTR) APT_LoadModule (FPTR)

You should only use this tag if you want to make your own loader routine.
You can only use this tag if you have the APT_EarlyCheck tag. If you don’t
have this tag, AccessiblePlayer will load the whole module into chip
memory. The fileposition will always be zero when your function is called.
Your function has to return an address in D0 if everything went ok,
otherwise return 0 if some kind of DOS error occured, 1 for out of memory
or 2 if another error occured. If you supply the return value 2, you must
have the APT_GetError tag. You must have the APT_FreeModule tag if you use
this tag.

APT_FreeModule (FPTR)

You must only use this tag if you use the APT_LoadModule tag. In this
function you should free all memory you have allocated in the
APT_LoadModule function. You will get the address returned by your
APT_LoadModule function in A1. Note that this function should support a

Players.doc 3 / 18

null pointer, which means do nothing.

(BOOL) APT_ExtLoad (FPTR)

Use this tag if you want to load more files than the current selected
module. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. You have to return a success boolean in D1, true means that
everything went ok and false means an error. You must have the APT_ExtFree
and the APT_GetError tags if you use this tag.

APT_ExtFree (FPTR)

In this function you have to free all files loaded with the APT_ExtLoad
function. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module.

(APTR) APT_GetError (FPTR)

You only need this tag, if you supply an error number of 2 (another error)
in your APT_LoadModule function or you have the APT_ExtLoad tag. You have
to return a pointer in D0 to a null terminated error text.

(BOOL) APT_InitPlayer (FPTR)

This function should initialize your player routine. This function are only
called when a new module has been loaded into memory. In A1 you will get
the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module. You have to return a
boolean value in D1 that indicates a success or failure. True means success
and false means failure.

APT_EndPlayer (FPTR)

This function will be called when a module is freed from memory. You should
do some cleanup here. You will in A1 get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

APT_InitSound (FPTR)

Here in this function you should initialize the module so it will start
over with the tune number stored in APG_Tune in the AccessblePlayers global
data area. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. This tag must exist.

APT_EndSound (FPTR)

This function should only clear the audio channels and reset variables if
you have some. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module. This tag must exist.

(BOOL) APT_StartIRQ (FPTR)

Players.doc 4 / 18

You should only use this tag if you want to start your own IRQ. If you want
this you should not use the APT_Interrupt tag. In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module. You have the return a boolean
value in D1 that indicates a success or failure. True means success and
false means failure.

APT_StopIRQ (FPTR)

In this function you have to stop your IRQ routine you have set up in your
APT_StartIRQ function. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

APT_Interrupt (FPTR)

This function should be your interrupt routine. AccessiblePlayers interrupt
routine will generate a software interrupt pointing to your routine. If you
do not support this tag, you must have APT_StartIRQ and APT_StopIRQ
instead. In A1 you will get the addressreturned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. D1 (BOOL) will indicate that your routine was called from VBlank or
CIA. True means VBlank and false means CIA.

APT_PlayerName (APTR)

ti_Data should contain a pointer to the player name, like Protracker. The
string can max be 30 characters long. This tag must exist.

APT_Description (APTR)

ti_Data should contain a pointer to a description of the player. You can
separate a new line with the ASCII code 10. The following rule should be
used when you make the description:

1. The first line should contain the name of the programmer of the original
player.

2. The second line should contain the name of the adaptor. If you have made
the player, skip this line.

3. The third line should be empty. At last a description of what the player
can support and what it do.

Example:
+--------------------------------+
|Original player by Lars Hamre. |
|Adapted & optimized by Tax. |
| |
|This player supports Noise- and |
|ProTracker modules. |
|It can handle modules with |
|either 64 or 100 patterns. |
| |
|It can also load samples into |
|FastMem & play them from there. |
+--------------------------------+

Players.doc 5 / 18

(APTR) APT_ModuleName (FPTR)

This function should return a pointer to the name of the module in A0. Do
only support this tag if you can find the name. In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module.

(APTR) APT_Author (FPTR)

This function should return a pointer to the name of the author in D0 or
NULL if you can’t find it. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

(APTR) APT_SubSong (FPTR)

This function should return a pointer to two words in A0. The first word
should be the max number of tunes in the module. The second should be the
default start tune number to play at start, where the first is 0. You will
in A1 get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module.

APT_CIA (BOOL)

This boolean tag indicates that your player can support CIA mode. If you
don’t have this tag, AccessiblePlayer will start a CIA interrupt with about
50Hz and call your interrupt routine with the VBlank flag set.

APT_Pause (BOOL)

This boolean tag indicates that your player can support pause.

APT_Volume (BOOL)

This boolean tag indicates that your player can support volume changing.

APT_VolumeFunc (FPTR)

In some players you need to change the volume with a function, because you
can’t get the global volume value within the interrupt routine. You can
then use this function to set the volume. It will be called every time the
user change the volume slider or a new module is loaded. If you use this
tag, you will not be able to support fade. In A1 you will get the address
returned by your APT_LoadModule function if supported, otherwise it will be
the start address of the module.

APT_FastMem (APTR)

You should only support this tag if your player can play samples from both
chip and fast memory. You should also make your own loader routine, which
will allocate each sample and load them one by one. The ti_Data field
should be a pointer to one byte. This byte will be filled by
AccessiblePlayer with the user-set value in the FastMem cycle in the Config
window. Here is a list of which values the byte can have. If you get a
value which is not one of these, you should threat it as zero:

Players.doc 6 / 18

0: Never (Never use fast memory, load it into chip)
1: Always (Do only use fast memory, not chip. If you can’t allocate fast

memory, you has to stop the loading routine with memory error)
2: When Needed (Start to allocate samples in chip memory, and when you run

out of memory, begin to use the fast memory instead)

(WORD) APT_GetMaxPattern (FPTR)

This function should return the max number of patterns which are used in
the current module. The result should be stored in D1. In A1 you will get
the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module.

(WORD) APT_GetMaxSample (FPTR)

This function should return the max number of samples used in the current
module or the supported number which the player can handle. The result
should be stored in D1. In A1 you will get the address returned by your
APT_LoadModule function if supported, otherwise it will be the start
address of the module.

(WORD) APT_GetSongLength (FPTR)

You should return the length of the current tune in D1 in this function. In
A1 you will get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module.

(WORD) APT_GetSongPos (FPTR)

This function should return the current song position in D1. The result
should be between 0 and the max length-1 (0-x). In A1 you will get the
address returned by your APT_LoadModule function if supported, otherwise it
will be the start address of the module.

(WORD) APT_Rewind (FPTR)

If you support that the user can rewind the actual tune, you have to use
this tag. The ti_Data field should point to a function that rewind the tune
one "pattern". Note that you should not rewind if the postion is zero. In
A1 you will get the address returned by your APT_LoadModule function if
supported, otherwise it will be the start address of the module. As result,
you has to return the new position in D1.

(WORD) APT_Forward (FPTR)

If you support that the user can forward the actual tune, you have to use
this tag. The ti_Data field should point to a function that count the tune
one "pattern" forward. You have to make a wrap around, that means when you
get to the end, you have to start over again with the counter. In A1 you
will get the address returned by your APT_LoadModule function if supported,
otherwise it will be the start address of the module. As result, you has to
return the new position in D1.

APT_ChangeChannel (FPTR)

This function will be called when the user selects one of the channel
on/off switches. It should turn the channel on or off, depending on the

Players.doc 7 / 18

given state. In A1 you will get the address returned by your APT_LoadModule
function if supported, otherwise it will be the start address of the
module. D1 (UBYTE) is the channel you have to change (0-3) and D2 (BOOL8)
the state. True means on and false means off.

(BOOL) APT_TestNextLine (FPTR)

This function has to test if the player has moved to the next pattern line
and return true or false in D1 depending if it has or not. This function is
only used in the fade routine in AccessiblePlayer, so if you do not support
volume, you should not support this. In A1 you will get the address
returned by your APT_LoadModule function if supported, otherwise it will be
the start address of the module.

APT_GetSample (FPTR)

This function should fill out the SampleInfoStructure found in the
AccessiblePlayer global area. In A1 you will get the address returned by
your APT_LoadModule function if supported, otherwise it will be the start
address of the module. In D1 (WORD) you will get the sample number
AccessiblePlayer want information about. The number is between 0 and the
max number of samples-1 (0-x). See the include file for more information
about the structure.

APT_PlaySample (FPTR)

This function will be called when the user plays on the keyboard. You
should play the selected sample. In A1 you will get the address returned by
your APT_LoadModule function if supported, otherwise it will be the start
address of the module. In D1 (WORD) you will get the sample number you have
to play. The number can be between 0 and max number-1 (0-x). In D2 (UBYTE)
you will get the note you have to play the sample with. This value can be
between 0 and 35, where 0 are C-1 and 35 are B-3. In D3 (UBYTE) you will
get the channel you have to play in (0-3). Note that there are a global
function in AccessiblePlayer that can help you to play the sample.

APT_RealtimePlay (BOOL)

Use this tag if you also support that the user can play a sampling while
your player plays the module. If you set this to true, AccessiblePlayer
will call your APT_PlaySample function when one or more channels are turned
off.

APT_CallBack (FPTR)

This function will only be called if you send a CallBack message to
AccessiblePlayer. This can be used if you want the main program to do
something you can’t do in an interrupt. Note that, if the user are in a
filerequester or the program are about to load, this function will not be
called before the program are finished with the job. If you want a task to
run on its own, you have to make a new task. In A1 you will get the address
returned by your APT_LoadModule function if supported, otherwise it will be
the start address of the module.

APT_Config (APTR)

You should only support this tag if you have a config window in your

Players.doc 8 / 18

player. The ti_Data field should point to two longwords. In the first
longword you should store a pointer to your function. In the second
longword there will be stored the global data pointer before your function
will be started. Your function will be called when the user selects Config
in the player preference window. You have to use the global data function
to make your window, so it will get a standard. See in a later section
about the standard and how to make your window.

Global Data Area

All of your functions will be called with a pointer to AccessiblePlayers
global data area in A5. In this area there is a lot of intern functions and
data that will make it easier for you to implement a new player. In this
section I will describe the functions and data in the AccessiblePlayer and
which parameters they uses. The normal procedure on how to call an extern
function, is to use the following code segment:

move.l APG_xxxxx(a5),a4
jsr (a4)

Data

APG_FileSize (ULONG)

In this longword the length of the module which is being loaded is stored.

APG_Tune (UWORD)

In this word the current tune number starting with 0 is stored.

APG_Hz (WORD)

The screens frequency, example 50 for normal PAL, is stored here. This can
be used to calculate the DMA wait and other things.

APG_MaxVolume (UBYTE)

Right here the maximum volume which your player may use (the volumeslider
position), if you support volume changing, is stored.

APG_Tempo (UBYTE)

The current CIA tempo is stored here. The tempo is the same as in
Protracker, that means it can be between 32 and 255.

APG_SampleInfo (STRUCTURE)

This is the sample info structure which you have to use in your
APT_GetSample and APT_PlaySample functions.

Players.doc 9 / 18

Functions

APG_AllocMem

SYNOPSIS
adr = APG_AllocMem (len, requirements)
D0 D0 D1

APTR APG_AllocMem (ULONG, ULONG);

FUNCTION
This function will allocate some memory with the Len number of
bytes. If you use this function, you have to use APG_FreeMem to
free the memory again.

INPUTS
len - number of bytes to allocate.

requirements - the same as with exec’s AllocMem() function.

OUTPUTS
adr - the allocated address or null if the allocation failed.

APG_FreeMem

SYNOPSIS
APG_FreeMem (adr)

A1

void APG_FreeMem (APTR);

FUNCTION
This function will free the memory you have allocated with
APG_AllocPublic or APG_AllocChip. Do not use this function to free
some memory you haven’t allocated with the above functions. You can
pass a null to this function.

INPUTS
adr - the address returned from APG_AllocPublic or APG_AllocChip.

APG_GetFilename

SYNOPSIS
APG_GetFilename (buffer)

A0

void APG_GetFilename (APTR);

FUNCTION
This function will copy the filename with path of the module which
are being loaded to the buffer given. This buffer must be at least

Players.doc 10 / 18

2*108 bytes long.

INPUTS
buffer - is a pointer to the buffer where you want the filename

with path to be placed. The name will be NULL terminated.

APG_FindName

SYNOPSIS
name = APG_FindName (path)
A0 A0

APTR APG_FindName (APTR);

FUNCTION
This function will scan the string Path after a filename and then
return a new pointer in the string where the filename start.

INPUTS
path - a pointer to a NULL terminated string with a path &

filename.

OUTPUTS
name - a new pointer in the string where the filename starts.

APG_CheckLoad

SYNOPSIS
success = APG_CheckLoad (start, len, adr)

D0 D1 D2 A0

LONG APG_CheckLoad (LONG, LONG, APTR);

FUNCTION
You can use this function in your EarlyCheck function. This will
load Len bytes from the Start into your buffer starting at address
Adr. Note that this function will NOT decrunch.

INPUTS
start - this is the start in bytes, where you want to check from.

len - this is the length in bytes you want to read.

adr - this is a pointer to your buffer where you want the readed
data to be stored.

OUTPUTS
success - if this is zero, it means that an error has occured,

otherwise it will contain a nonzero value.

APG_PartialLoad

Players.doc 11 / 18

SYNOPSIS
success = APG_PartialLoad (len, adr)

D0 D1 A0

LONG APG_PartialLoad (LONG, APTR);

FUNCTION
You can use this function in your LoadModule function. This will
load Len bytes from the current filepostion into your buffer
starting at address Adr. Note that this function will NOT decrunch.

INPUTS
len - this is the length in bytes you want to read.

adr - this is a pointer to your buffer where you want the readed
data to be stored.

OUTPUTS
success - if this is zero, it means that an error has occured,

otherwise it will contain a nonzero value.

APG_Load

SYNOPSIS
adr = APG_Load (name, type)
D0 A0 D1

APTR APG_Load (APTR, BOOL);

FUNCTION
This function allocate some memory, load & decrunch it. When you
want to free the memory allocated by this function, you must use
the APG_FreeMem function.

INPUTS
name - a pointer to the filename you want to load.

type - which memory type you want to allocate. True means chip and
false means public.

OUTPUTS
adr - is the address where the file is loaded or zero for an error.

The allocated memory will automatically be freed if the error
is a load error.

APG_DupOpen

SYNOPSIS
fh = APG_DupOpen ()
D0

BPTR APG_DupOpen (void);

Players.doc 12 / 18

FUNCTION
If you want to use the file AFTER the load function, you have to
call this function. It will open the file again, which will prevent
a deletion of the temp file, if the original file was crunched. You
must call DupClose to close the file again.

OUTPUTS
fh - a new filehandler to the file or null for an error.

APG_DupClose

SYNOPSIS
APG_DupClose (fh)

D0

void APG_DupClose (BPTR);

FUNCTION
Use this function to close a file opened with the DupOpen function.
It will close the file and delete the temp file. You can pass a
null to this function.

INPUTS
fh - the filehandler from the DupOpen function.

Seek

SYNOPSIS
APG_Seek (pos)

D2

void APG_Seek (ULONG);

FUNCTION
This function will change the fileposition to the position Pos from
the beginning of the file which is about to be loaded.

INPUTS
pos - the new fileposition.

APG_PlaySample

SYNOPSIS
APG_PlaySample ()

void APG_PlaySample ();

FUNCTION
This function is very useful. It will play the sample which is set
up in the global SampleInfo structure. It will setup the volume,

Players.doc 13 / 18

looping etc. See include file for more information about the
SampleInfo structure.

APG_CalcVolume

SYNOPSIS
newvol = APG_CalcVolume (vol)

D0 D0

UWORD APG_CalcVolume (UBYTE);

FUNCTION
You can use this function if you want to calculate a new volume.
This is very useful, because if you support volume changing you
just has to call this function before you store the volume in the
hardware register and then you will get a new volume which is
calculated relatively to the volume which the user has chosen. This
function is safe to call from interrupts.

INPUTS
vol - the volume you want.

OUTPUTS
newvol - the new volume you have to use.

APG_WaitDMA

SYNOPSIS
APG_WaitDMA ()

void APG_WaitDMA (void);

FUNCTION
This function will wait enough time for the audio DMA to set up the
hardware. Use this instead of using raster wait or DBRAs. This
function is safe to call from interrupts.

APG_SendMsg

SYNOPSIS
APG_SendMsg (msg)

D2

void APG_SendMsg (UWORD);

FUNCTION
You have to use this function if you want to send a message to
AccessiblePlayer. Such a message could be a NextModule or a
NextPosition message. See the include file for a list of all the
messages and the values you can send. This function is safe to call
from interrupts.

Players.doc 14 / 18

INPUTS
msg - the message you want to send.

APG_SetTimer

SYNOPSIS
APG_SetTimer ()

void APG_SetTimer (void);

FUNCTION
This function will set the CIA timer to the tempo stored in
APG_Tempo field in the global data area. This is safe to call from
interrupts.

NewProcess

SYNOPSIS
process=APG_NewProcess (tags)

D0 A0

APTR APG_NewProcess (APTR);

FUNCTION
This function will make a new process. It will call the
CreateNewProcess() function in the dos.library. See docs about this
function for understanding.

INPUTS
tags - a pointer to a tag list.

OUTPUTS
process - the created process or null for an error.

OpenWindow

SYNOPSIS
window=APG_OpenWindow (struct)
D0 A0

APTR APG_OpenWindow (APTR);

FUNCTION
This function should only be used in your configuration routine. It
will open a window descriped in the structure given. See below and
in the include file for more information. When you make your gadget
structure, you should always count the gadget ID from 1 and
upwards. Do never use gadget IDs 997-999, because they are reserved
numbers.

Players.doc 15 / 18

INPUTS
struct - a pointer to a structure describing the window.

OUTPUTS
window - a private window handler structure or zero for an error.

WaitMsg

SYNOPSIS
msg=APG_WaitMsg (window)
D0 A0

APTR APG_WaitMsg (APTR);

FUNCTION
This function will get your configuration task to sleep if there
aren’t any message in the queue, else it will get the message and
handle it if it’s one of the private messages. If not it will
return with a pointer to the message.

INPUTS
window - a pointer to a window handler returned by the

APG_OpenWindow function.

OUTPUTS
msg - a pointer to the next message. This is a standard gadtools

message.

Reply

SYNOPSIS
APG_Reply (msg)

A0

void APG_Reply (APTR);

FUNCTION
This will reply the message returned by the APG_WaitMsg function.

INPUTS
msg - a pointer to the message.

ActivateGadget

SYNOPSIS
APG_ActivateGadget (window, id)

A0 D0

void APG_ActivateGadget (APTR, UWORD);

FUNCTION

Players.doc 16 / 18

This will activate the gadget with the ID number. You should only
call this function with a string or integer gadget.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow function.

id - the gadget ID number.

GetGadAdr

SYNOPSIS
adr=APG_GetGadAdr (window, id)
A0 A0 D0

APTR APG_GetGadAdr (APTR, UWORD);

FUNCTION
This function will return a pointer to the intuition gadget
structure with the gadget ID number. You can use this function if
you want to use the structure by yourself, like when you should get
the string from a string gadget.

INPUTS
window - a pointer to a window structure returned by the

APG_OpenWindow function.

id - the gadget ID number.

OUTPUTS
adr - the start address to the gadget structure.

Flash

SYNOPSIS
APG_Flash ()

void APG_Flash (void);

FUNCTION
This function will flash the screen.

AllocChannels

SYNOPSIS
request=APG_AllocChannels ()

D0

APTR APG_AllocChannels (void);

FUNCTION

Players.doc 17 / 18

If you want to use the audio.device you have to call this function.
It will first check to see if APlayer already have allocated the
channels, and if so it will return immediately with a pointer to
the IOAudio structure. If APlayer haven’t allocated the channels,
it will try to allocate all four channels with priority 127, and if
it succeeds you will get a pointer to an IOAudio structure or a
null for failure. You may not use this structure, you have to make
a copy of it. Remember to call the APG_FreeChannels when you are
finished, but only if you got a success from this function.

OUTPUTS
request - a pointer to a IOAudio request or null for an error.

FreeChannels

SYNOPSIS
APG_FreeChannels ()

void APG_FreeChannels (void);

FUNCTION
This function will free the channels and close the audio.device.
You may only call this function if you got a success from
APG_AllocChannels.

Configuration of players

In this section I will explain how to make your configuration window and
how to handle messages etc. First you have to make your own loader routine
in the library INIT function. This loader should just load the
configuration file from the "ENV:APlayer/" directory. The filename should
be the players name with a ".cfg" extension. Then you make the player as
always, but you should also implement the APT_Config tag in your tag list.
See above for further explanation of this tag.

When the user selects the config gadget in the player window, your config
routine will be started as a new process with the players name (starting
with an "ap" prefix). Therefore you have to exit with a zero in D0 and a
RTS command. After some initializing which may not take too long, you have
to call the global function APG_OpenWindow. This will open a window
centered on the screen with the size etc. you have given. It will also make
a default menu which the user can use. This menu will be handled by
AccessiblePlayer, so you don’t have to worry about that. The only thing you
should handle, is the gadgets you have set as extra gadgets. The default
gadgets (Save, Use & Cancel) will also be handled by AccessiblePlayer. It
will save the configuration as raw data.

After you have called the APG_OpenWindow function, you have to start a loop
where you call APG_WaitMsg. This function will get the task to sleep if
there aren’t any messages. If there is a message, it will test to see it’s
one of the private messages, like a menu selection. If so, they will be
handled and your task will go to sleep again. If it isn’t one of the

Players.doc 18 / 18

private messages, it will return a pointer to the message. After you have
got the values you need, you have to reply the message with the APG_Reply
function. If the user have selected the save, use or cancel gadget, you
will get a zero as message pointer. Then you have to exit your task with a
moveq #0,d0 and a RTS. You don’t have to close your window, this will be
done by AccessiblePlayer. If you use the Exit pointer in the structure,
AccessiblePlayer will call this function before it will save the
configuration. In this function you have the get the values from your
string or integer gadgets.

	Players.doc
	main

